Recovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Gel

نویسندگان

  • Shimon Rochkind
  • Zvi Nevo
چکیده

OBJECTIVE Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated. BACKGROUND Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect. The proposed technology is a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats. Preclinical study on rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft "gold standard" treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration

As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, ...

متن کامل

Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve.

Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the ...

متن کامل

Effect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model

Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...

متن کامل

Nanotechnology for peripheral nerve regeneration

Peripheral nerve injuries (PNI) can lead to lifetime loss of function and disfigurement. Different methods such as conventional allograft procedures and using of biological tubes have problems for damaged peripheral nerves reconstruction. Designed scaffolds with natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and non-absorb...

متن کامل

Nanotechnology for peripheral nerve regeneration

Peripheral nerve injuries (PNI) can lead to lifetime loss of function and disfigurement. Different methods such as conventional allograft procedures and using of biological tubes have problems for damaged peripheral nerves reconstruction. Designed scaffolds with natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and non-absorb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014